令和7年度 一般選抜(前期日程)

共生社会創成学部 小論文 産業技術学部 総合問題

解答例

【出題意図】

問題1(共通)

高校卒業程度までの学力を基盤とした、「論理的思考力」「判断力」「表現力」を、多角的に 評価することを目的としている。

日本語の基礎的な能力(読解力,表現力・表記力)、資料等の読解力及び論理的思考力を重 視している。

問題2(產業情報学科)

高校で学ぶ基礎的な知識を身につけていることを前提に、数学・理科・工学といった分野において求められる「論理的思考力」「判断力」「課題解決力」を、多角的に評価することを目的としている。

知識の暗記や再現にとどまらず、与えられた情報を的確に読み取り、分析し、自らの考えを論理的に構築して明確に表現する力を重視している。

問題3 (総合デザイン学科)

高校卒業程度までの学力を基盤とした、デザイン系の「論理的思考力」「判断力」「表現力」 を、多角的に評価することを目的としている。

説明文章をそのまま記載するのではなく、与えられた情報を的確に読み取り、判断し、論理 的に情報を整理して明確に表現する力を重視している。

問題1 (共生社会創成学部(小論文)・産業技術学部(総合問題) 共通) ※問題1の解答用紙のみ、試験開始から60分経過した時点で回収します。

(1)

(ア)(ウ)

(2)

調査結果をみると、 手助けをしたことがない人の理由 で |最 |も |多 |い |の |が | 「 | ど |う |手 |助 |け |し |た |ら |よ |い |か |分 |か |ら |な |か |っ た」である。 また、 |手||助||け||を||し||た||人||の||理||由||を||見||る 身 近 |に | 障 | 害 | の | あ | る | 人 | が | い | て | 大 | 変 | さ | を | 知 | っ | て | い | る B 「 手 助 けをした人が家族、 知人だった」 という 回答が合計し 7 3 割程度ある。 この とから、 障害のある人 が身近にい る場合、 障 害 に つ い て あ る 程 度 理 解 し て い る た め 、 手 助 け|を|す|る|こ|と|が|で|き|る|と|考|え|ら|れ|る|。 以上のことを踏ま えると、 困。っている障害のある人に対して手助けをしな か | っ | た | 人 | が | 手 | 助 | け | を | す | る | よ | う | に | な | る | た | め | に | は | 、 障 害 の あ る | 人 | と | 接 | す | る | 機 | 会 | を | 増 | や | し | て | 障 | 害 | に | 関 | す | る | 知 | 識 | や | 理 | 解 | を 深めることが大事だろう。 具体的には、 世の中にはどの ような障害を抱えている人がどの程度いるのか、 障害の 種 類 や 特 性 に 応 じ て どのよ うな困 があ つ ぞれにどの ようにサポー できるのかについて学校や地 1 域 で 学 ぶ 機 会 を 作 る 方 法 が 考 え ら れ る 。

400

問題2 (産業技術学部 産業情報学科(総合問題))

(1) 答えを導き出すための考え方と計算過程も書きなさい。図や表を用いてもよい。

(a)

両方の視力が 0.8 に満たないので、右目が ~ 0.5 、0.6、0.7、左目が ~ 0.5 、0.6、0.7 となる 3x3 の部分の人数の合計を求めればよい。

合計を計算すると33人となる。

相	~0.5	0.60	0.7	0.8	0.9	1.00	1.20	1.50	2.0	合計
~0.5	5€	34	7							8
0.6	46	4	3	5€	24	1€				19
0.7	2€	44	8	9€	7€	3€	14			34
0.8	2	34	7€	84	7€	6€	2€	14		36
0.9		14	4	7€	74	5€	3€	24		29
1.0			2€	7€	4	7€	5€	3€	16	29
1.2			1€	3€	4	5€	44	34	2€	22
1.50					14	2€	3€	24	16	9
2.0							1∉		1€	2
合計4	13€	15	25	39	32	29	19	114	5€	188

※ 表の網掛けの部分の合計が計算の対象になる (表を用いた説明はなくてもよい)

答え イ

(b)

右目、または左目の少なくとも一方の視力が 1.2 以上の人数の合計は 51 人なので、これを全体の 188 人で割る。

51/188=0.271...

となるので、約27%となる。

左目	~0.5	0.6	0.7	0.8	0.9	1.0	1.24	1.50	2.0	合計。
~0.5	5€	3€								8
0.60	46	4	3€	5€	24	16				19
0.7	2€	4	8	9€	7€	3€	1€		i	34
0.8	2	3€	7€	8	7€	6	26	16		36
0.9		14	4	7	74	5	3€	24		29
1.00			2€	7€	4	7€	5€	3€	1	29∉
1.20		خضن	16	3€	4	5	4	3€	2	22
1.50					16	2€	3€	24	1	9
2.00		-					1€		18	2€
合計4	13€	15	25€	39	32	29	19	114	5€	188

※表の網掛けの部分の合計が計算の対象になる(表を用いた説明はなくてもよい)

答えり

(c)

左右の視力を足して 2 で割った値が 1.2 以上になる部分の数値の合計を計算すれば良い。 例えば、左目が 1.5 ならば、右目が 0.9 以上となる部分が対象である。 対象となる数値を合計すると 26 人となる。

左目	~0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.50	2.0	合計中
~0.5	5€	3€								8
0.6	46	4	3€	5€	24	14				19
0.7	2€	4	8	96	7€	3€	16			34
0.8	2	3€	7€	86	7€	6€	24	1		36
0.94		16	46	7€	76	5	3€	26		29
1.0			24	7€	44	7€	56	3€	16	29
1.2			14	3€	4	54	4	3	24	22
1.50					16	24	3€	2	16	96
2.0			إنبنبا				16		14	2€
合計4	13	15	25€	39	32	29	19	11	5€	188

※表の網掛けの部分の合計が計算の対象になる(表を用いた説明はなくてもよい)

答え イ

(a)

_(a)	(β)
400	4N

- (b) 答えを導き出すための考え方と計算過程も書きなさい。図や表を用いてもよい。
- (a)の解答例および I ~Ⅲの情報を踏まえて、表にまとめると、下表のようになる。

N を整数として、(a)の解答例より、A 社の店舗数は 4N[店舗]、A 社全体の在庫数は 400N[冊]となる。I の情報により、B 社全体の在庫数は 400N[冊]となり、B 社の店舗数は 5N[店舗]となる。Ⅱ の情報により、C 社の店舗数は 2N[店舗]となり、全体の在庫数は 300N[冊]となる。Ⅲ の情報により、D 社の店舗数は 12N[店舗]となり、全体の在庫数は 720N[冊]となる。

会社	1 店舗あたりの書籍の平均在庫数	店舗数	全体の在庫数
Α	100 冊/店舗	4N 店舗	400N 冊
В	80 冊/店舗	5N 店舗	400N ⊞
С	150 冊/店舗	2N 店舗	300N ⊞
D	60 冊/店舗	12N 店舗	720N 冊

上表を参照し、①~③それぞれの内容の正誤を判断する。

- ① A 社全体の在庫数は、C 社全体の在庫数より少ない。
 - →C 社全体の在庫数は、150[冊/店舗]×2N[店舗]=300N[冊]となる。

A 社の方が全体の在庫数が多いため、①の内容は「誤(誤り)」である。

- ② B 社全体の在庫数と C 社全体の在庫数を合わせた在庫数は、D 社全体の在庫数より少ない。
 - →B 社全体の在庫数と C 社全体の在庫数を合わせた在庫数は、

400N[冊]+300N[冊]=700N[冊]となる。

- D 社全体の在庫数より少ないため、②の内容は「正(正しい)」である。
- ③ B 社と C 社を合わせた 1 店舗あたりの書籍の平均在庫数は、A 社と同じである。
 - →B 社と C 社を合わせた 1 店舗あたりの書籍の平均在庫数は、

(400N[冊]+300N[冊])÷(5N[店舗]+2N[店舗])=100[冊/店舗]となり、

A 社の 1 店舗あたりの書籍の平均在庫数と同じになるため、③の内容は「正(正しい)」である。

よって、解答は「オ」(① 誤 ② 正 ③ 正) である。

答えオ

(3) 答えを導き出すための考え方と計算過程も書きなさい。図や表を用いてもよい。

図 2-3 に示すように、真上から見た図で考えられる最小数を出す。

立体を、図 2-1 の正面および、図 2-2 の真上から見た図の縦を列、横を行とし、照らし合わせると、図 2-1 の左側の列は、図 2-1 の正面から見た時に立方体が 3 個あることは確かであるが、図 2-2 の真上から見た時は 1 個しかないので、立方体が 3 個あることがわかる。

中央の列は、図 2-1 の正面から見た時に最大で 4 個ある。図 2-2 の真上から見た時に $1 \sim 3$ 行に立体が何個あるかはわからないが、どこかの行に最低でも 1 個はある。この列のどの行に 4 個あるかはわからず、どこにあっても良いが、立方体の最小数はわかる。

右の列は、図 2-1 の正面から見た時に最大で 2 個ある。図 2-2 の真上から見た時も 2 個であることから最低でも 1 個はある。 この列のどの行に 2 個あるかはわからず、 どこにあっても良いが、 立方体の最小数はわかる。

最小数: 3+4+1+1+1+2=12 よって最小数は12個である。

図 2-3:最小数

問題3 (産業技術学部 総合デザイン学科(総合問題))

解答例1

気候変動による地球温暖化の問題を知ろう

~気候変動を止めるために私たちができる取り組みについて~

解答例2

SDGsな未来のために

気候変動による地球温暖化の問題を知ろう

~気候変動を止めるために私たちができる取り組みについて~

①ゴミを減らす	②電気自動車への移行	③家庭での節電
 ●リデュース (Reduce)	二酸化炭素の排出 ● ガソリン車 → たくさん ●電気自動車 → ない 日本政府 〈2050年カーボン ニュートラル宣言〉 2050年までに 完全にガソリン車の生産と利用 の廃止を目指す。	発電電力について